H. TVERBERG

1. Let "*m*-set" mean a set of *m* points in \mathbb{R}^n . We shall say that an *m*-set is *r*-divisible if it can be divided into *r* sets in such a way that the convex hulls of the *r* sets have a non-empty intersection. B. Birch [1] conjectured

THEOREM 1. Any (r(n+1)-n)-set is r-divisible,

and proved it in the case n=2. In the case n>2, Birch proved a weaker result, with r(n+1)-n replaced by $rn(n+1)-n^2-n+1$. This was, for most r and n, an improvement of the earlier result, by R. Rado [2], that any $((r-2)2^n+n+2)$ -set is r-divisible.

The case r = 2 was proved by J. Radon [3], and used by him for proving Helly's theorem. The reader is referred to [4] for a discussion of Radon's and Helly's theorems and related questions.

In order to see that Theorem 1 is best possible, *i.e.* that some (in fact almost all) (r(n+1)-n-1)-sets are not *r*-divisible we consider an (r(n+1)-n-1)-set Ω , the points of which are algebraically independent, and a partition of Ω into sets $\Omega_1, \ldots, \Omega_r$. (We say that *m* points are algebraically independent if their coordinates are *mn* real numbers, algebraically independent over the field of rational numbers.) It suffices to show that the intersection of L_1, \ldots, L_r , the *linear* hulls of $\Omega_1, \ldots, \Omega_r$, is empty. Hence assume that $L_1 \cap \ldots \cap L_r \neq \phi$. This is a purely algebraic independence in Ω , we conclude that whenever sets $\Omega_1', \ldots, \Omega_r'$ are given, with linear hulls L_1', \ldots, L_r' , then $L_1 \cap \ldots \cap L_r' \neq \phi$, provided, for each *i*, Ω_i' is equipollent to Ω_i and L_i' has the same dimension as L_i . (Strictly speaking, this statement is correct only if interpreted in real *projective n*-space.)

One now gets the desired contradiction by choosing first r non-intersecting (also at infinity) linear spaces L_1', \ldots, L_r' such that, for each i, dim $L_i' = \dim L_i$, and then, in each L_i' , a set Ω_i' , equipollent to Ω_i , the linear hull of which is L_i' . The feasibility of this is granted by the inequality

codim
$$L_1 + \ldots + \operatorname{codim} L_r \ge (n+1 - (\operatorname{number of points in } \Omega_1)) + \ldots$$

= $r(n+1) - (r(n+1) - n - 1) = n + 1.$

Below we shall give a proof of Theorem 1 in its full generality. The author would like to thank Birch and Rado for stimulating discussions on a very early version of this paper.

Received 8 May, 1964; revised 14 November, 1964. [JOURNAL LONDON MATH. Soc., 41 (1966), 123-128]

2. We first prove three lemmas.

LEMMA 1. Let V_1, \ldots, V_s be linear subspaces of n-space, none of which contains a given point A. Let W_i be the space spanned by V_i and A and assume that, for every i, W_i intersects $V_1 \cap \ldots \cap V_{i-1} \cap V_{i+1} \cap \ldots \cap V_s$ in a single point B_i . Assume furthermore that $\operatorname{codim} V_1 + \ldots + \operatorname{codim} V_s = n + 1$. Then, for some i, V_i does not separate A and B_i .

We start with the case when $\operatorname{codim} V_1 = \ldots = \operatorname{codim} V_s = 1$. By our assumptions s then equals n + 1, and each space W_i equals the full n-space. Thus each point B_i is the intersection of the hyperplanes V_j , $j \neq i$. We may assume the points B_1, \ldots, B_{n+1} to be linearly independent, so that they form the basis of a barycentric coordinate system in n-space. (If B_1 , say, is in the linear hull of $B_2, \ldots, B_{n+1}, B_1$ belongs to V_1 , as B_2, \ldots, B_{n+1} are all in V_1 , but then V_1 does not separate A and B_1 , and the lemma holds.) In this system A has n+1 coordinates, the sum of which equals 1. Thus some coordinate, say the first one, must be positive. This means that A and B_1 are not separated by the hyperplane that is spanned by B_2, \ldots, B_{n+1} . This latter hyperplane is, however, identical to V_1 .

If, say, codim $V_1 > 1$, then W_1 is a proper subspace of *n*-space. Reasoning by induction, we may thus assume that Lemma 1 holds in W_1 . We apply it to $V_1 \cap W_1, \ldots, V_s \cap W_1$ and A. As the modular law holds in the lattice of all linear subspaces of a linear space, we see that the space spanned by $V_i \cap W_1$ and A equals the intersection with W_1 of the space spanned by V_i and A, *i.e.* of W_i . Now we have

$$\{(V_1 \cap W_1) \cap \dots \cap (V_{i-1} \cap W_1) \cap (V_{i+1} \cap W_1) \cap \dots \\ \dots \cap (V_s \cap W_1)\} \cap (W_i \cap W_1) = B_i.$$

Thus it only remains to compute the sum of the codimensions in W_1 of $V_1 \cap W_1, \ldots, V_s \cap W_1$. If i > 1, then

 $n = \operatorname{codim} B_1 \leq \operatorname{codim} V_i \cap W_1 + \operatorname{codim} V_2 + \dots$

+ codim V_{i-1} + codim V_{i+1} + ... + codim V_s

$$= \operatorname{codim} V_i \cap W_1 + n - \operatorname{codim} W_1 - \operatorname{codim} V_i \leq n.$$

Hence $\operatorname{codim} V_i \cap W_1 = \operatorname{codim} W_1 + \operatorname{codim} V_i$, which means that the codimension of $V_i \cap W_1$ in W_1 equals $\operatorname{codim} V_i$. The sum of the codimensions in W_1 of $V_1 \cap W_1$, ..., $V_s \cap W_1$ thus equals

$$1 + (n+1 - \operatorname{codim} V_1) = 1 + \dim W_1.$$

We conclude that, for some i, $V_i \cap W_1$ does not separate A and B_i . But then V_i does not separate A and B_i .

LEMMA 2. An m-set Ω that is the limit of a sequence $\Omega_1, \Omega_2, \ldots$ of r-divisible m-sets, is itself r-divisible.

We put $\Omega_j = \{P_{j1}, ..., P_{jm}\}, \ \Omega = \{P_1, ..., P_m\}$. Our assumptions are that

$$\lim_{j \to \infty} P_{jk} = P_k, \quad k = 1, \dots, m, \tag{1}$$

and that for each j there exists a partition of the set $\{1, ..., m\}$ such that the convex hulls of the sets obtained by partitioning Ω_j in the corresponding way, have a non-empty intersection. Assume that for each jwe have chosen a point R_j in that intersection. Then there must be a partition of $\{1, ..., m\}$ into sets $\Gamma_1, ..., \Gamma_r$ such that, for infinitely many j,

$$R_{i} \in \text{convex hull } (\{P_{ik} | k \in \Gamma_{i}\}), \quad i = 1, \dots, r.$$

$$(2)$$

We may as well assume that (2) holds for all j, as no harm is done by replacing the originally given sequence of *m*-sets by a subsequence. The relations (1) and (2) show that the sequence R_1, R_2, \ldots is bounded, hence contains a convergent subsequence. We may as well assume R_1, R_2, \ldots itself to be convergent, towards a point R. Then, by (1) and (2),

 $R \in \text{convex hull } (\{P_k | k \in \Gamma_i\}), i = 1, ..., r,$

which proves the lemma.

LEMMA 3. Let $Q, P_1, ..., P_N$ (N = r(n+1) - n) be algebraically independent points. Then $\{Q, P_2, ..., P_N\}$ is r-divisible if $\{P_1, ..., P_N\}$ is r-divisible.

For each real number t, put $\Omega(t) = \{(1-t) P_1 + tQ, P_2, ..., P_N\}$. We assume that $\Omega(0)$ is r-divisible, and we shall prove that $\Omega(1)$ is r-divisible. We do this by proving that the set

$$T = \{t \mid \Omega(t) \text{ is } r \text{-divisible}\}$$

is both open and closed. T, being non-empty, must then consist of all real numbers; in particular T must contain the number 1.

By Lemma 2, T is closed; hence it remains to prove that T is open. Let now t_0 be an arbitrary point of T. We make a study, first of the set $\Omega(t_0)$, and then of the sets $\Omega(t)$ when t is near t_0 .

As $t_0 \in T$, there is a point L and a partition of $\Omega(t_0)$ into sets

$$\Omega_1 = \{(1 - t_0) P_1 + t_0 Q, P_2, \dots, P_{n_1+1}\}, \dots, \Omega_r$$

such that L is in the convex hull of each Ω_i . If some Ω_i consists of more than n+1 points, there is a subset Ω_i' of Ω_i , containing only n+1 points and having L in its convex hull, by Carathéodory's theorem (see [4]). This means that we may assume each Ω_i to contain n_i+1 points, $n_i \leq n$, because N < r(n+1)+1.

Now, when i > 1, the convex hull of Ω_i is a non-degenerate n_i -simplex σ_i , by the algebraic independence of the points in Q_i . L_i , the linear hull of Ω_i , is thus an n_i -space. If L_1 is not an n_1 -space, *i.e.* if σ_1 is a degenerate

 n_1 -simplex, L_1 must be the (n_1-1) -space H that is spanned by the n_1 algebraically independent points P_2 , ..., P_{n_1+1} . Then the point $(1-t_0) P_1 + t_0 Q$ is in H, and we get

$$L \in \sigma_1 \cap \ldots \cap \sigma_r \subset H \cap L_2 \cap \ldots \cap L_r.$$

But the linear spaces $H, L_2, ..., L_r$ are algebraically independent and the sum of their codimensions equals

$$rn - ((n_1 - 1) + n_2 + \ldots + n_r) = rn + 1 - (N - r) = n + 1.$$

This is a contradiction, and we conclude that also σ_1 is non-degenerate.

Let $\Omega_1(t) = \{(1-t) P_1 + tQ, P_2, ..., P_{n_1+1}\}$. Then there is an open interval $I_1 \ni t_0$, such that when $t \in I_1$, $\Omega_1(t)$ has a convex hull $\sigma_1(t)$ which is a non-degenerate n_1 -simplex, with linear hull $L_1(t)$. Let L(t) denote the space $L_1(t) \cap L_2 \cap \dots \cap L_r$. What can be said about L(t)? If K is the linear hull of $\{Q, P_1, \dots, P_{n_1+1}\}$, then $L_1(t) \subset K$ and, accordingly, $L(t) \subset K \cap L_2 \cap \ldots \cap L_r$ for all values of t. If $n_1 = n$ K is all of n-space and the sum of the codimensions of L_2, \ldots, L_r equals n. Thus L(t) is a single point, which is independent of t. If $n_1 < n$, K is an $(n_1 + 1)$ -space, algebraically independent of L_2, \ldots, L_r . Thus $K \cap L_2 \cap \ldots \cap L_r$ is a 1-space, a line M. This means that $L(t_0)$, if it is not the single point L, equals M. Now $L(0) \in M$, and hence, if $L(t_0) = M$, $L(0) \in L_1(t_0) \cap L_1(0)$. Further, L(0) is not in H, the linear hull of $\{P_2, \ldots, P_{n_1+1}\}$, as we have seen that $H \cap L_2 \cap \ldots \cap L_r$ is empty. This shows that the space $L_1(t_0) \cap L_1(0)$, which clearly contains H, must contain H strictly, *i.e.* $L_1(t_0) = L_1(0)$. Similarly, we find that $L_1(t_0) = L_1(1)$. But then $Q \in L_1(1) = L_1(0)$, which is impossible, as Q is algebraically independent of the points in $\Omega_1(0)$ (remember that $n_1 < n$).

Hence $L(t_0)$ consists of the point L only. Furthermore, there is an open interval $I_2 \subset I_1$, with $t_0 \in I_2$, such that, for all t in I_2 , L(t) is a single point, depending continuously on t. Actually,

$$L(t) = \alpha(1-t) \left(\alpha(1-t) + \beta t \right)^{-1} L(0) + \beta t \left(\alpha(1-t) + \beta t \right)^{-1} L(1),$$

where β is the barycentric coordinate of L(0) with respect to P_1 in the system with basis $\Omega_1(0)$ and α is the barycentric coordinate of L(1) with respect to Q in the system with basis $\Omega_1(1)$.

Let us prove that t_0 is an interior point of T. The easier case is when L is in the interior of each of the simplices $\sigma_1, \ldots, \sigma_r$. Then, by continuity, t_0 belongs to an open interval $I_3 \subset I_2$, such that when $t \in I_3$,

$$L(t) \in \sigma_1(t) \cap \sigma_2 \cap \ldots \cap \sigma_r.$$

Thus, in this case, $\Omega(t)$ is r-divisible when $t \in I_3$. Assume now that L is on

[†] Note that L(0) is a single point, because $L_1(0)$, L_2 , ..., L_r are algebraically independent spaces, the sum of the codimensions of which equals n. Likewise L(1) is a single point.

the boundary of one of the simplices, e.g. σ_a . Then L is on some $(n_a - 1)$ -face of σ_a , the opposite vertex of which is, say, P_b . [Note that, if a = 1, L cannot be on that face of σ_1 which is opposite to $(1-t_0) P_1 + t_0 Q$, as we have seen that $H \cap L_2 \cap \ldots \cap L_r$ is empty.] The number b, which also determines a, of course, is uniquely determined as we can see in the following way. Assume, namely, that L is also on some other face, the one opposite P_{c} , say, of some simplex σ_d (where maybe d=a). We then look at the sets which are obtained from $\{Q, P_1, ..., P_{n_1+1}\}, \Omega_2, ..., \Omega_r$ by taking away P_b and P_c . The sum of the codimensions of the linear hulls of these sets equals n+1 (n+2 if $n_1 = n$ and b > n+1, c > n+1), and so, by algebraic independence, they do not intersect, whereas we have assumed them all to contain L. This contradiction shows the uniqueness of b, so that not only does L belong to the boundary of exactly one simplex, namely σ_a , but L is also in exactly one $(n_a - 1)$ -face, let us call it τ_b , of σ_a . Thus L is an inner point of τ_b . This can also be expressed as follows: In the space L_a , σ_a is the intersection of $n_a + 1$ closed half-spaces. L belongs to the interior of all but one of these. The remaining one has L on its boundary, which is the hyperplane π_b spanned by τ_b .

By continuity, the results above yield the existence of a neighbourhood I_4 , of t_0 , $I_4 \subset I_2$, such that, when $t \in I_4$, the following is true. L(t) is in each of the simplexes $\sigma_1(t)$, σ_2 , ..., σ_r , except possibly $\sigma_a(\sigma_1(t) \text{ if } a=1)$. L(t) is in each of the half-spaces whose intersection is $\sigma_a(\sigma_1(t) \text{ if } a=1)$, except possibly the one that has P_b in its interior.

This means that for each t in I_4 , a sufficient condition for $\Omega(t)$ to be r-divisible is that the space $\pi_b(t)$ (the one spanned by $\Omega_a - \{P_b\}$ if a > 1 and by $\Omega_1(t) - \{P_b\}$ if a = 1) does not separate L(t) and P_b .

Till now we have only been considering one special partition of $\Omega(t_0)$.

There are, however, certain other partitions that are worthy of consideration. Namely, let $x \ (\neq a)$ be such that $n_x < n$. Then each of the sets $\Omega_1, \ldots, \Omega_x \cup \{P_b\}, \ldots, \Omega_a - \{P_b\}, \ldots, \Omega_r$ contains less than n+2 points, and the convex hulls of these sets all contain the point L. L is on the boundary of one of these hulls, namely that of $\Omega_x \cup \{P_b\}$. This allows us to conclude that there is a neighbourhood I_4^x of t_0 , such that, for each t in I_4^x a sufficient condition for $\Omega(t)$ to be r-divisible is that the space L_x $(L_1(t) \text{ if } x=1)$ does not separate $L^x(t)$ and P_b . Here $L^x(t)$ is the intersection of the linear hulls of the sets obtained from

$$\Omega_1, \ldots, \Omega_x \cup \{P_b\}, \ldots, \Omega_a - \{P_b\}, \ldots, \Omega_r$$

on replacing the point $(1-t_0) P_1 + t_0 Q$ by the point $(1-t) P_1 + tQ$.

Let now I_5 be the intersection between I_4 and the neighbourhoods $I_4^{x_1}, I_4^{x_2}, \ldots$. Then, if t is in I_5 , we can apply Lemma 1 to the spaces $\pi_b(t), L_{x_1}, L_{x_2}, \ldots$ if $n_1 = n$ or a = 1, or to $\pi_b(t), L_1(t), L_{x_2}, \ldots$ if $n_1 < n$ and a > 1, and to the point P_b . It is clear that the conditions of the lemma are

satisfied, the points B_i being the points L(t), $L^{x_1}(t)$, $L^{x_2}(t)$, The conclusion of the lemma then states that at least one of our sufficient conditions for $\Omega(t)$ to be r-divisible is satisfied, and Lemma 3 is proved.

Theorem 1 itself is now an almost immediate consequence of the Lemmas 2 and 3. We choose an r-divisible N-set Ω_1 , (N=r(n+1)-n), the points of which are algebraically independent. We may, for instance, let Ω_1 consist of a point and the vertices of r-1 n-simplices containing that point. If an N-set Ω is given, we can find a sequence $\Omega_1, \Omega_2, \ldots$ of N-sets, converging towards Ω , and having the property that $\Omega_i \cup \Omega_{i+1}$ is, for all i, an (N+1)-set of algebraically independent points. By Lemma 3, and the r-divisibility of Ω_1, Ω_2 is r-divisible. Lemma 3, applied once more, then shows that Ω_3 is r-divisible, etc., whereupon Theorem 1 follows by Lemma 2.

THEOREM 2. For any (r(n+1)-n)-set Ω there exists a point R such that any closed half-space containing R contains at least r points from Ω .

This theorem, which is a special case of a theorem by R. Rado [5], deserves its place here. Indeed, it was the prospect of giving the following transparent proof of Theorem 2 that first made the author conjecture and try to prove Theorem 1.

By Theorem 1, there are disjoint sets $\Omega_1, \ldots, \Omega_r$, the union of which is Ω , and there is a point R that belongs to the convex hull of each set Ω_i . Any closed half-space containing R will then contain at least one point from each set Ω_i , and thus at least r points from Ω .

References

- 1. B. J. Birch, "On 3N points in a plane", Proc. Cambridge Phil. Soc., 55 (1959), 289-293.
- L. R. Rado, "Theorems on the intersection of convex sets of points", Journal London Math. Soc., 27 (1952), 320-328.
- J. Radon, "Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten" Math. Annalen, 83 (1921), 113-115.
- L. Danzer, B. Grünbaum and V. Klee. "Helly's theorem and its relatives", Convexity, Proc. symposia of Pure Math., vol. VII, A.M.S., 1963, 101-177.
- 5. R. Rado, "A theorem on general measure", Journal London Math. Soc., 21 (1946), 292.

University of Bergen, Bergen, Norway.